Distributed Adaptive High-Gain Extended Kalman Filtering for Nonlinear systems
نویسندگان
چکیده
In this work, we propose a distributed adaptive high-gain extended Kalman filtering approach for nonlinear systems. Specifically, we consider a class of nonlinear systems that are composed of several subsystems interacting with each other via their states. In the proposed approach, an adaptive high-gain extended Kalman filter is designed for each subsystem. The distributed Kalman filters communicate with each other to exchange subsystem state estimates. First, an implementation strategy which specifies how the distributed filters should communicate is designed. Second, the detailed design of the subsystem filter is described. Subsequently, the stability of the proposed distributed state estimation is analyzed. Finally, the effectiveness and applicability of the proposed design are illustrated via the application to a chemical process example.
منابع مشابه
A New Adaptive Extended Kalman Filter for a Class of Nonlinear Systems
This paper proposes a new adaptive extended Kalman filter (AEKF) for a class of nonlinear systems perturbed by noise which is not necessarily additive. The proposed filter is adaptive against the uncertainty in the process and measurement noise covariances. This is accomplished by deriving two recursive updating rules for the noise covariances, these rules are easy to implement and reduce the n...
متن کاملOn-Line Nonlinear Dynamic Data Reconciliation Using Extended Kalman Filtering: Application to a Distillation Column and a CSTR
Extended Kalman Filtering (EKF) is a nonlinear dynamic data reconciliation (NDDR) method. One of its main advantages is its suitability for on-line applications. This paper presents an on-line NDDR method using EKF. It is implemented for two case studies, temperature measurements of a distillation column and concentration measurements of a CSTR. In each time step, random numbers with zero m...
متن کاملRotated Unscented Kalman Filter for Two State Nonlinear Systems
In the several past years, Extended Kalman Filter (EKF) and Unscented Kalman Filter (UKF) havebecame basic algorithm for state-variables and parameters estimation of discrete nonlinear systems.The UKF has consistently outperformed for estimation. Sometimes least estimation error doesn't yieldwith UKF for the most nonlinear systems. In this paper, we use a new approach for a two variablestate no...
متن کاملDistributed Fuzzy Adaptive Sliding Mode Formation for Nonlinear Multi-quadrotor Systems
This paper suggests a decentralized adaptive sliding mode formation procedure for affine nonlinear multi-quadrotor under a fixed directed topology wherever the followers are conquered by dynamical uncertainties. Compared with the previous studies which primarily concentrated on linear single-input single-output (SISO) agents or nonlinear agents with constant control gain, the proposed method is...
متن کاملAdaptive Neural Network Method for Consensus Tracking of High-Order Mimo Nonlinear Multi-Agent Systems
This paper is concerned with the consensus tracking problem of high order MIMO nonlinear multi-agent systems. The agents must follow a leader node in presence of unknown dynamics and uncertain external disturbances. The communication network topology of agents is assumed to be a fixed undirected graph. A distributed adaptive control method is proposed to solve the consensus problem utilizing re...
متن کامل